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Abstract. Following the success of 2D pose estimation from a single
image, a lot of work focus on 3D pose estimation on video by exploiting
temporal information. In the scenarios of temporal 3D pose estimation,
several recent works have achieved significant advances via Temporal
Convolution Network (TCN). However, the current TCN fashion suffers
from lacking local coherence caused by excessive dependence on local
frames and limited local dynamic range, failing to estimate poses cor-
rectly in real scenes, especially with high-speed motions. To tackle this
problem, we design a Long-term Bank to select and collect candidate key
poses, and further provide a LSFM(Long-term and Short-term Fusion
Mechanism) to integrate long-term pose information into short-term con-
volution window, such to enhance the temporal coherence of local neigh-
bor frames. Experimental results and ablation studies demonstrate that
proposed approaches significantly promote the accuracy and robustness
of the benchmark model.
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1 Introduction

Human pose estimation is a classic task in computer vision. In recent years,
2D pose estimation[16, 1, 5, 22, 23, 3] has made significant progress and is
gradually matured. The technique are playing critical role in many fields, such as
behavior detection in security monitoring, posture correction in medical health,
etc. Extending the 2D applications to 3D scenarios, 3D pose estimation are
attracting increasing attention in areas 3D motion capture, body reconstruction,
animation synthesis, etc.

Although several researchers attempt to learn 3D pose directly from a single
image, yet it remains challenges due to the inherent ambiguity of 2D information.
In contrast,videos provide additional explicit and implicit temporal constraints
for 3D skeleton estimation. To mine more temporal information, a large family
of the existing work[19, 13, 4, 20, 10] employs time sequence models of Deep
neural network. However, all these methods only use short-term local motions,
which are usually discontinuous on high-speed conditions. This challenges are
illustrated as in Figure 1. In this case, local poses(Lt−2, Lt−1, Lt, Lt+1, Lt+2) are
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Fig. 1. A fusion example in our work. Origin local sequence(Lt−2, Lt−1, Lt, Lt+1, Lt+2)
is fused with distant frames(Dm, Dn) for smoothing itself.

incoherent reflected by the similarity with the center pose Lt. This unsmooth
dynamic hinders the performance of convolution in infer phase.

Our method is inspired by the idea of Wu et al.[24], where short-term and
long-term features are utilized to capture local and global video dynamics. With
this motivation in mind, we designed a long-term and short-term information
fusion mechanism. Firstly, we build a Long-term Bank to store keyframes by a
greedy strategy and update it dynamically. And secondly, the local poses are re-
constructed with keyframes via a similarity-based rearrangement method before
local convolution operation.

The contributions of this paper can be summarized:

1. We design a 3D skeleton extraction algorithm that combines long-term and
short-term information, which can effectively exploit local and global features
to increase local continuity.

2. We propose an effective example-based long-term pose extraction mecha-
nism, and long-term and short-term pose fusion mechanism. Both algorithms
are intuitive and high efficiency.

3. We conduct comprehensive experiments to evidence the effectiveness of the
proposed methods.
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2 Related Work

2.1 2D Pose Estimation from a single Image

In essence, 2D pose estimation is a regression task that learns coordinates of
joints position from image pixels. The single-person 2D pose estimation output
probabilistic heatmaps of human joints via taking a monocular RGB image as
input, and then obtain the final coordinates from the heatmaps. For instance,
CPM[23], Stacked Hourglass[16], etc. With the foundation of single-person esti-
mation, the task can be extended to multi-person situations. Multi-person 2D
pose estimation can be divided into top-down and bottom-up methods. The
top-down refers to first detecting every single person’s bounding box, and then
performing single-person pose estimation for each person separately, such as
AlphaPose[5], CPN[3], HRNet[22]. In contrast, the bottom-up method first es-
timates the joint points of various parts, and clusters joints of different people
together to produce different individuals finally, such as work [2, 15, 6]. 2D hu-
man body pose estimation remains far from the practical applications. Thus,
quite a lot of work has emerged in the three-dimension domain.

2.2 3D Pose Estimation from a single Image

There are two branches of algorithms for estimating the human body joints
position from a single image. One of them is one-stage that directly predicts 3D
pose from a monocular image, e.g., work[12, 18]. Another branch requires two
steps. Specifically, estimate 2D pose at first, and then lift 2D pose to 3D pose.
Powered by existing successful 2D pose detection models, the 3D pose estimation
task can be optimized independently, and also the complexity of model is less.
Previous work[14, 11] follow this branch. Because of the ambiguity that several
3D poses can be projected to the same 2D pose, several work[8, 17] take leverage
of NRSFM(Non-rigid Structure from Motion) to recover 3D from 2D.

2.3 3D Pose Estimation on Video

Compared to a single monocular image, there are more temporal and spa-
tial semantics in videos. The constraints of multi-view, spatial geometric, and
temporal continuity can be used to mitigate the impact of self-occlusion and
ambiguity. Even though several approaches[21] adopt the End-to-End method
to estimate 3D poses from images, the state of the art achievements are made
by learning from 2D pose sequences. Different from the work using LSTM[20,
10], Dario et al.[19] employ TCN[9] with stacked dilated convolution layers to
predict 3D pose of the center frame by weighting adjacent frames. The accuracy
of their model mostly depends on local receptive field size, such as 243 frames
in their paper, which is much large for normal videos. When reducing the size,
some helpful information will be lost.

To balance both aspects, we design a Long-term Bank to store key poses
extracted from the input sequence based on our selection strategy, and further
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propose a novel long-term and short-term information fusion algorithm to pro-
mote the local coherence.

3 Method Overview

The pipeline of our method is shown as Figure 2. Given a sequence of im-
ages, the pipeline first adopt a pretrained 2D pose estimation network to infer
the corresponding 2D positions of human joints frame by frame. Based on the
estimated per-frame 2D pose, our method sequentially upgrade the temporal
2D poses to 3D poses using Temporal Convocation Network(TCN). During the
estimation, our method dynamically maintains a long-term pose bank to store
diverse candidate 2D key poses, and adaptively select and integrate coherent
long-term poses into the local convolution window (Short-term Bank).

Fig. 2. The pipeline of our method

3.1 3D Pose Estimation Temporal Convolution Network

We employ the fashion of Temporal Convolution Network[19] as the frame-
work of 3D pose estimator, as is illustrated in Figure 3. In this framework, the
input is 2D poses X = {x0

1, x
0
2, ..., x

0
T }, the model transforms them to a 3D pose

of center frame through a series of residual blocks. Each residual block contains a
dilation convolution layer with a kernel size of 3 and a linear layer with a kernel
size of 1, formulated as
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where d is dilation rate, wi is convolution weight, and wli is linear weight.
The TCN model is trained via a semi-supervised manner, where the unsupervised
loss ensure the projected estimated 3D poses are consistent with the input 2D
poses[19].

Fig. 3. Structure of Temporal Convolution Network

3.2 Long-term and Short-term Poses Fusion Mechanism

Although Temporal Convolution Network capture smoothly continuous dy-
namics, it lacks the ability to model discontinuous motions, which commonly
happens on fast moving humans. To tackle this shortcoming, we collect a set of
the Long-term key poses and integrate them into the short-term poses of the
sliding temporal window of TCN, so as to reconstruct the local continuity of the
human motion.

Construction of Long-term Pose Bank The Long-term Pose Bank (LTB)
is designed to represent motion patterns of the whole sequence by storing key
poses. To this end, the poses selected into LTB should be as diverse as possible.
Therefore, we devise a similarity-based method to incrementally select diverse
poses into the LTB from scratch as the Temporal convolution network proceeds
in time sequence. The measurement of similarity between two 2D poses are
defined based on their positions of joints:

S = 1−

J−1∑
i=0

‖Atransi −Bi‖2

J × avg bone length(B)
(2)
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where Atrans is a translated pose from pose A to pose B by subtracting the offset
of their centers, and J is the number of joint.

Based on the measurement of similarity between two poses, we adopt a greedy
strategy to progressively insert key poses into LTB. In detail, when Long-term
Bank LTB is not full, the candidate frame x is inserted if the similarity S with
all stored frames is less than the preset threshold T . While when reaching the
max capacity Size, we dynamically maintain an accumulated similarity value
AS for each keyframe pose and update poses by keeping the sum of AS of the
entire bank as little as possible. The process is illustrated as Algorithm 1. In
practice, for online video streams, keyframes are collected from the past. As for
offline videos, they can also be obtained from the future.

Algorithm 1 Greedy Progressive Insertion Algorithm

Require: candidate frame x, Long-term Bank LTB with capacity Size and similarity
threshold T

1: if length(LTB) < Size then
2: for each LTBi do
3: S := Similarity(x, LTBi)
4: if S < T then
5: insert x into LTB
6: update AS for each LTBi

7: end if
8: end for
9: else

10: for each LTBi do
11: S := Similarity(x, LTBi)
12: if S < T then
13: delete item where AS is max
14: insert x into LTB
15: update AS for each LTBi

16: end if
17: end for
18: end if

Fusion of Long-term Bank and Short-term Bank The fusion mechanism
aims to ensure that the Short-term Bank after fusion is more continuous than
before. We design the Alternative Symmetric Pose Fusion Algorithm to dynam-
ically fuse key poses of LTB into STB, targeting at enhancing the motion co-
herency of the local spatial convolution window. For the center frame of the
convolution window of TCN, we firstly calculate the pose similarities between
the center frame and 2D key poses that stored in LTB. Then, these similarity
value Sc are sorted in the descending order. Then the 2D poses in LTB which
are similar with center frame enough (exceed a threshold) are insert into STB.
To keep the balance of left and right half side of the STB window, the insertion
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is performed in an alternative symmetric manner. An example of the algorithm
is shown as Figure 4.

Fig. 4. A fusion example of Alternative Symmetric Pose Fusion Algorithm.

3.3 Multiple rate frame sampling for data augmentation

Unlike the smooth motions collected in indoor environments with high-speed
cameras, the poses in real scenes usually have multiple dynamic ranges. To en-
courage the network to learn this pattern, we augment the training data by
uniformly sample original continuous sequence with varieties of sampling inter-
vals to synthesize different motion dynamics. In our experiments, the sampling
intervals are set to 3, 5, 7.

3.4 Implementation Details

Training. Considering the efficiency of training, we directly train TCN on Hu-
man3.6M with ground-truth 2D keypoints. The loss function is the mean per-
joint position error between predictions and 3D annotations. Adopting Adam
as optimizer with momentum=0.1, we train TCN with a receptive field of 27
frames for 80 epochs. The learning rate and batch size are set to 1e-3 and 1024
respectively.

Inference. The framework has two stages in infer phase. In the first stage, 2D
poses are predicted by HRNet, pre-trained on the MS-COCO dataset. In the
second stage, before operating convolution in TCN, keyframes are collected into
Long-term Bank, and local 2D poses are fused with them. Adopting a 17-joint
skeleton, We set capacity size=80 and similarity threshold=0.7 for Long-term
Bank.
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4 Experiments

4.1 Datasets and Evaluation Protocal

Following previous work[14, 19, 21], we conduct experiments on the Hu-
man3.6M dataset[7] as it contains abundant human poses with 2D and 3D an-
notations and includes 15 common actions. Besides, we use the pseudo-COCO
dataset transformed by Human3.6M to evaluate the ability of generalization of
our approaches.

In our experiments, we utilize three metrics: MPJPE, P-MPJPE, MPJVE.
MPJPE is the mean per-joint position error(also used for loss function). P-
MPJPE is the error after alignment with the ground truth in translation, rota-
tion, and scale. MPJVE is the mean per-joint velocity error. Note that all the
following experiments are carried out in comparison with the temporal model
of the work[19], abbreviated as VideoPose. In addition to Human3.6M, we also
collect a set of videos with fast moving human, and compare our method with
state-of-the-art on these challenging videos.

4.2 Comparison with State-of-the-art

Effectiveness of Long-term Bank Since there exists no large-scale human
fast-moving dataset, we build synthetic dataset to evaluate our methods by ex-
tracting frames from the Human3.6M origin sequences with a certain interval.
With intervals of 3, 5, 7 on testing data, the results in Table 1 and Table 2 show
that the model with Long-term Bank outperforms over the VideoPose without
it. The base model is pre-trained on Human3.6M with a receptive filed of 27. As
for the Long-term Bank, the capacity is 80 and the similarity threshold is 0.7.

Effectiveness of Data augmentation We conduct quantified experiments on
Human3.6M and pseudo-COCO respectively. Significant results of our method
are achieved on both datasets, as is listed in Table 3 and Table 4. Note that
the original continuous data is defined as Sequential, and the data after frame
sampling is denoted as SampleN, where N is interval size.

Table 1. Effectiveness of Long-term Bank. MPJPE(mm) results on testing
data (TD) with intervals of 3, 5, 7.

TD LTB Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

3 w/o 51.94 58.51 49.00 58.35 50.45 54.59 55.63 61.09 52.40 58.61 50.87 55.72 60.55 55.61 55.29 55.2
w 50.2555.7347.3155.61 48.84 52.5754.22 56.71 51.0556.38 48.90 53.48 56.71 53.52 52.90 52.9

5 w/o 60.05 69.65 55.80 71.25 56.49 64.46 64.22 74.95 60.14 70.81 59.34 65.90 71.98 62.25 61.13 64.6
w 56.7163.8253.2765.57 54.02 60.2661.16 66.96 57.0466.15 55.79 61.39 65.04 58.91 57.87 60.3

7 w/o 66.58 79.49 62.09 81.75 61.28 73.46 72.01 85.97 67.41 82.74 65.76 74.92 82.62 76.28 72.96 73.7
w 61.8070.7658.1073.50 57.71 67.1467.21 75.53 62.6275.27 60.78 68.35 72.22 67.29 64.71 66.9
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Table 2. Effectiveness of Long-term Bank. P-MPJPE(mm) results on testing
data (TD) with intervals of 3, 5, 7.

TD LTB Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

3 w/o 37.64 40.56 37.78 43.05 36.48 38.53 39.09 40.32 37.41 42.13 36.60 39.84 44.11 47.69 45.79 40.5
w 36.5339.0736.7441.35 35.50 37.6438.37 38.03 36.6841.13 35.66 38.35 42.22 46.07 43.95 39.2

5 w/o 44.82 47.24 42.79 52.52 40.31 43.62 45.37 48.45 41.33 48.31 41.77 47.35 51.40 53.28 50.39 46.6
w 42.2944.0041.2848.93 39.02 41.7143.54 44.13 39.9346.17 40.16 44.23 47.71 50.93 48.28 44.2

7 w/o 50.69 53.40 47.61 60.45 43.40 48.57 51.59 55.12 45.09 54.48 45.73 54.08 58.70 66.58 61.25 53.1
w 46.9148.3844.9955.03 41.45 45.4348.28 49.38 42.9851.10 43.43 49.37 52.76 58.68 54.34 48.8

Table 3. Ablation of our data augmentation method on Human3.6M.

Training Data Testing Data MPJPE↓ P-MPJPE↓ MPJVE↓
Sequential Sequential 39.0 28.7 1.89

Sample3 55.2 40.5 13.54
Sample5 64.6 46.6 21.80
Sample7 73.7 53.1 30.37

Sequential×2 Sequential 39.4 28.7 1.89
Sample3 53.1 38.9 12.75
Sample5 60.4 43.9 20.58
Sample7 67.7 49.4 28.74

Sample3+Sequential(Ours) Sequential 39.2 28.7 1.79
Sample3
Sample5
Sample7

Sample5+Sequential(Ours) Sequential 39.2 28.7 1.79
Sample3 39.1 28.8 7.17
Sample5 39.4 29.0 10.58
Sample7 40.5 29.8 14.5

Sample7+Sequential(Ours) Sequential 39.2 28.7 1.79
Sample3
Sample5
Sample7
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Table 4. Ablation of our data augmentation method on pseudo-COCO.

Training Data Testing Data MPJPE↓ P-MPJPE↓ MPJVE↓
Sequential Sequential 57.0 43.7 3.79

Sample3 72.3 55.3 16.53
Sample5 81.1 60.4 24.63
Sample7 90.2 66.5 32.98

Sequential×2 Sequential 57.4 43.9 3.77
Sample3 70.3 53.9 15.88
Sample5 77.7 58.1 23.67
Sample7 85.4 63.3 31.82

Sample3+Sequential(Ours) Sequential 57.3 43.9 4.38
Sample3
Sample5
Sample7

Sample5+Sequential(Ours) Sequential 57.3 43.9 4.38
Sample3 56.5 43.4 11.34
Sample5 56.5 43.5 15.67
Sample7 57.6 44.5 20.69

Sample7+Sequential(Ours) Sequential 57.3 43.9 4.38
Sample3
Sample5
Sample7

4.3 Results of Challenging Videos with Fast Moving Human

We collect 15 videos of four representative sports categories from the Internet
with the keywords: “Badminton”, “Tennis”, ”Table tennis”, and “Skating”. The
total length of all the videos is approximately 6 hours. Displayed as Figure 5 and
Figure 6, we visualized the comparison results, of which our method performs
better than the benchmark model.

5 Conclusion

In this paper, we propose a novel temporal information fusion mechanism
that integrates short-term poses with long-term poses to improve the coherence
of local pose sequence. Qualitative and quantitative experiments demonstrate
that the proposed fusion mechanism can promote the accuracy and robustness
of the benchmark model. Furthermore, to improve the generality of the basic
TCN model against high dynamic motions, we also provide a data augmentation
method that concatenates sequences with different frame rates. The results on
the Human3.6M dataset and pseudo-COCO dataset indicate the superiority of
this method.
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Fig. 5. Qualitative Justification of Long-term Bank. The red skeleton is Video-
Pose, and the black is the model with Long-term Bank.

Fig. 6. Qualitative Justification of Multiple Sampling Rate Augmentation.
The red skeleton is VideoPose, while the black is trained on augmented data.
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