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Structure-Aware Subspace Clustering 
Simin Kou, Xuesong Yin, Yigang Wang, Songcan Chen, Tieming Chen, Member, IEEE, and Zizhao Wu 

Abstract—Subspace clustering has attracted much attention because of its ability to group unlabeled high-dimensional data 

into multiple subspaces. Existing graph-based subspace clustering methods focus on either the sparsity of data affinity or the 

low rank of data affinity. Thus, the quality of data affinity plays an essential role in the performance of subspace clustering. 

However, the real-world data are generally high-dimensional, complex, and heterogeneous multi-source data, so that the data 

affinity learned by these methods cannot be completely dependent. Moreover, since these approaches always ignore the 

intrinsic structure of data, their grouping effect is relatively low. In this paper, we propose a novel unsupervised algorithm, called 

Structure-Aware Subspace Clustering (SASC), to address the above issues. SASC considers local and global correlation 

structures simultaneously to capture the intrinsic structure. Further, it integrates the captured structure into representation 

learning to gain a relatively precise data affinity. It is powerful to promote an all-around grouping effect and enhances the 

robustness and applicability of subspace clustering. Experiments on various benchmark datasets, including bioinformatics, 

handwritten digit, object image, and speech signal, demonstrate the effectiveness of the proposed algorithm. 

Index Terms—Multi-source data, affinity graph, intrinsic structure, structure-aware, subspace clustering, representation learning 

——————————   ◆   —————————— 

1 INTRODUCTION

N many real-world applications, such as computer vi-
sion, motion segmentation and bioinformatics recogni-

tion, the data are usually provided in the high-
dimensional form, i.e., digital sequences, images, videos, 
etc. Such high-dimensional data can be well depicted by a 
union of multiple low-dimensional subspaces. Subspace 
clustering (SC) is an effective technique to solve the clus-
tering problem of high-dimensional data. Specifically, SC 
aims to identify the subspaces where high-dimensional 
data points are located, and to group the data points into 
the corresponding subspaces [1]. For example, in a video 
of an intersection with multiple cars passing through, if 
one wants to separate each moving car, different subspac-
es are needed to describe the movement of different cars 
in the video. SC finds the latent subspaces suitable for 
each group of high-dimensional objects, and simultane-
ously groups these moving cars into different subspaces 
to achieve the segmentation of moving cars. Generally, SC 
is formulated as:  

Problem (Subspace Clustering). Given a data matrix 
X=[x1,…,xn]∈ℝ𝑚×𝑛, each column of X is sampled from a 
union of K subspaces {𝐶𝑖}𝑖=1

𝐾 . SC aims to identify the sub-
spaces and segment each data point xi into its correspond-
ing subspace.  

Many researchers have early endeavored to study the 
SC problem through iterative methods [2]-[4], algebraic 
methods [5]-[7] and statistical methods [8]-[10]. The three 

traditional methods have limited ability to deal with 
complex samples, like data with noise, degeneracy, or 
coupled structure. In recent years, graph-based subspace 
clustering methods [11]-[22] have attracted more attention. 
The main difference between these methods is the con-
struction of affinity graphs. 

Graph-based approaches can be divided into super-
vised and unsupervised categories. Supervised methods 
[23] use the sample labels to construct a penalty map to 
directly count the affinity. Due to the expensive labor cost 
of sample labeling, unsupervised methods have been 
more widely applied and extended to estimate the affinity 
between samples through the Euclidean distance metric 
or the dictionary representation. The method of using the 
Euclidean distance metric is generally described by the 
neighbor graph expressing the local structure[24]. In re-
cent years, methods based on the dictionary representa-
tion have become more popular. The dictionary is gener-
ally the dataset itself, so it is further derived into subspace 
clustering based on self-representation, and the affinity 
map is obtained by minimizing the reconstruction loss of 
the data self-representation and imposing representation 
constraints with different properties. Representation con-
straints in existing methods include the sparse representa-
tion [11],[17],[19],[20], the low-rank representation [12], 
[14],[25], least-squares regression [13],[18],[26], and the 
smooth representation [15],[25],[28]. These methods tend 
to focus only on a single representation between data, i.e., 
global or local. However, real-world data generally have 
complex structures and noise. The single representation is 
highly dependent on the data, which can easily lead to 
overfitting and out-of-sample problems. And the sparse 
representation does not consider the correlation between 
samples, which makes intra-subspace sparse and has a 
certain negative impact on the clustering accuracy. More-
over, noise and outliers may cause learned relationships 
between samples to be spurious, resulting in the poor 
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clustering performance. In summary, comprehensive data 
representation, the high correlation between samples, and 
mitigation or elimination of noise interference are all fac-
tors that have a positive impact on existing graph-based 
subspace clustering methods.   

Motivated by this, we propose a novel unsupervised 
subspace clustering algorithm, called Structure-Aware 
Subspace Clustering (SASC), as shown in Fig. 1, which 
incorporates the structure representation into the sub-
space learning, and thus obtains a framework for com-
prehensive affinity capturing and subspace clustering. 
SASC efficiently combines three structure representations, 
including the adaptive local structure, the global structure 
based on maximizing scatter, and the global correlation 
structure by ridge regression approach. It aims to accu-
rately perceive the intrinsic structure of data, gaining an 
affinity graph with high discriminative power for sub-
space learning. The experimental results show that, com-
pared with other state-of-the-art methods, the proposed 
SASC algorithm is less dependent on multi-source data, 
and shows consistently good performance. Moreover, the 
clustering results obtained by SASC are relatively stable 
and robust to noise. In what follows, we summarize the 
main contributions of this paper as: 

(1) Under the premise of considering data correlation, 
the proposed SASC can simultaneously capture the global 
and local structures, making full use of the complementa-
rity of the composite structure. It can perceive the intrin-
sic structure of the high-dimensional data, which is valu-
able for expressing the affinity between samples with rel-
ative accuracy and reducing the sensitivity to multi-
source data and noise interference. Therefore, our model 
is robust and effectively solves the problems of overfitting 
and out-of-sample, which may lead to better generation 
to real-world applications. 

(2) SASC formulates a new grouping measure method 
based on the grouping effect, extracting the main infor-
mation in a global scope by maximizing scatter. It can 
reduce the redundancy of the global representation when 

considering data correlation. In addition, we introduce 
this method into subspace representation learning togeth-
er with local grouping and global correlation grouping, 
which captures more comprehensive structural infor-
mation. Thus, SASC formulates an effective affinity 
measure for subspace clustering based on adaptive local 
grouping and global correlation grouping.  

(3) An adaptive local structure-aware method is intro-
duced, which not only ensures the accuracy of the local 
representation, but also better adapts to multi-source data. 
And it does not need to increase the manually adjusted 
parameters. Hence, this method can improve the adapta-
bility and robustness of the algorithm in real-world appli-
cations, and the simplicity of the model is better main-
tained.  

(4) The resulting structure graph can comprehensively 
describe the intrinsic relationship between samples with 
good interpretability and discriminability. Each internal 
element of this graph can directly reveal the affinity be-
tween any two samples. Such a structure graph is a gen-
eral intrinsic one, and several popular graph-based ap-
proaches can be viewed as the special cases of this meth-
od to some extent. It can be naturally extended to other 
research fields, such as semi-supervised learning, multi-
view learning, and so on. 

(5) Compared with the methods using sparse represen-
tation and low-rank representation, SASC does not re-
quire any iterative computation and has a lower computa-
tional cost. In addition, simple scatter optimization leads 
to computational tractability and low model complexity.  

We summarize the symbols used in this paper in Table 
1. The remainder of the paper is organized as follows. 
Section 2 gives a brief overview of existing graph-based 
subspace clustering methods. In Section 3, we present the 
proposed SASC algorithm, provide the solution method 
and show some analysis. In Section 4, we perform the 
compared experiments with several baselines on 15 
benchmark datasets. Finally, the conclusions are present-
ed in Section 5.  

 

Fig. 1. The framework of the proposed Structure-Aware Subspace Clustering (SASC) algorithm. 

2 RELATED WORK 

Affinity graph plays an essential role in the methods of 
graph-based subspace clustering. It is used to represent 
the affinity between any samples in a dataset and can be 
described by two representations, that is, global and local. 
In this paper, we uniformly refer to them as structure rep-

resentation. Generally, the local structure only depicts 
partial samples with correlation, and the global one de-
scribes the affinity between all the samples in the dataset. 
Current popular graph-based methods are based on the 
Euclidean distance metric or the dictionary representation. 
The representative work and its key characteristics are 
shown in Fig. 2. 
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Fig. 2. Organization chart and classic algorithms of graph-based subspace clustering methods. Graph-based subspace clustering is usually 
divided into two categories: the Euclidean distance measurement and the dictionary representation. In these two kinds of approaches, some 
algorithms capture the local structure to learn the representation, while others employ the global structure to learn the representation. 

The methods based on dictionary representation gen-
erally construct the affinity graph under the assumption 
of self-representation [11], [28]. Self-representation means 
that any sample in the same subspace can be obtained by 
a linear combination of other data samples, and this prob-
lem can be defined as: 

min
𝑍
‖𝑋 − 𝑋𝑍‖𝐹

2 + 𝜇𝛷(𝑍),    𝑠. 𝑡. 𝑍 ∈ Ψ,             (1) 

where X∈ℝ𝑚×𝑛 is the original data, 𝜇 is a trade-off pa-
rameter, and 𝛷(𝑍)  and Ψ  are the regularizer and con-
straint set on the self-representation coefficient matrix Z.  

TABLE 1 
SUMMARY OF SYMBOLS 

Symbols Definitions 

X Data matrix 

Z Coefficient matrix 

ZT The transpose of Z  
L Laplacian matrix 

e A vector with all elements of 1 

A Weight matrix 

I Identity matrix 

H Global scatter matrix 

M Negative matrix of H 

Q Label guidance matrix 

P-1 The inverse of matrix P 

tr(P) The trace of matrix P 

ǁPǁ1 ℓ1-norm of matrix P 

ǁPǁ* Nuclear-norm of matrix P 

ǁPǁF Frobenius-norm of matrix P 

The main difference in the kind of methods is the regu-
larizer, and different regularizers can help to obtain dif-
ferent representations for expressing the affinity graph. 
For example, using ℓ1-norm as a regularizer can gain the 
sparse representation. SSC[11] obtains the sparse repre-
sentation by solving the ℓ1-norm minimization problem. 
Specifically, in the SSC model, the regularization term can 
be expressed as 𝛷(𝑍) = ‖𝑍‖1. Because of its sparsity, SSC 
has been further expanded. EnSC [16] exploits the ℓ1-
norm and ℓ2-norm mixed model to find the optimal self-
expressive coefficient. S3C[17] incorporates sparse repre-
sentation learning and spectral clustering into a unified 
optimization scheme to alternately calculate the represen-
tation matrix and the segmentation matrix. S3COMP[19] 
exploits a dropout technique into the self-representation 
model to address the connectivity problem related to SSC. 
SSC+E[20] uses the entropy-norm of the affinity matrix as 
the regularization term to obtain the entropy representa-

tion. Brbić et al. [21] introduced two S0/ℓ0 quasi-norms to 
achieve non-convex regularized LRSSC, capturing local 
and global structures of data. 

ℓ1-norm-based methods select as few samples as possi-
ble in the dataset to represent the data, and thus it can 
effectively eliminate the connection between samples be-
longing to different subspaces. The sparse representation, 
however, has weak expressive ability in the same sub-
space and cannot establish the correlation between sam-
ples, so it has a certain negative impact on the clustering 
accuracy. In order to utilize the correlation between sam-
ples to improve the clustering accuracy, the low-rank rep-
resentation and the grouping effect are introduced to ob-
tain an affinity graph with tighter intra-subspace. They 
leverage the nuclear-norm and ℓ2-norm, respectively, and 
captured the structure representation using them are all 
global. LRR[12] seeks the low-rank representation by 
solving the nuclear-norm-based minimization issue. The 
regularization term in the LRR objective function can be 
formulated as 𝛷(𝑍) = ‖𝑍‖∗ . LRSC[14] groups the data 
corrupted by noise or gross errors into different subspac-
es by solving a non-convex nuclear-norm optimization 
problem. The above two methods can capture the global 
structure by using the nuclear-norm. Wen et al. [40] incor-
porated the distance regularization and rank constraint 
into LRR to respect the global and local information of 
data. Least-squares regression (LSR) [13] is a classic algo-
rithm based on the grouping effect, which segments high-
ly correlated data together. Since LSR assigns consistent 
weights to all representations, it may be detrimental to 
inter-subspace discrimination. Therefore, Hu et al. [15] 
proposed an enforced grouping effect, introducing the 
local information into the original grouping effect and 
capturing the smooth representation, but they ignored the 
global correlation structure of data. SSRSC[18] introduces 
the non-negative constraint and the scalar constraint into 
the LSR model to avoid the problem of negative elements 
and forced symmetry of the affinity matrix. SOGFS[24] 
performs local structure learning and neighbor represen-
tation selection simultaneously, and can reduce the influ-
ence of redundant features in the original data on neigh-
bor representation selection. Fu et al. [41] introduced a 
projection distance penalty into double LRR to capture 
the global and local structure. To improve the robustness, 
they exploited the Laplace rank constraint as a regularizer 
and incorporated it into the cost function. Wei et al. [42] 
constructed an adaptive graph to respect the local struc-
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ture, which is merged into LSR to improve the sparsity of 
the obtained coefficient matrix. Qin et al. [43] regarded 
enforced block diagonal subspace clustering as an opti-
mization problem to learn the expected similarity, and 
obtained the representation by solving the radial basis 
function kernel. Guo et al. [44] proposed a multi-view 
subspace clustering model induced by rank consistency to 
gain consistent low-rank structure information between 
view-specific self-expression matrices. 

There are some works [30]-[32] that combine SSC and 
LRR to satisfy the inter-clustering separability and intra-
clustering compactness of samples. However, the results 
obtained by ℓ1-norm and nuclear-norm are approximate 
solutions. The ℓ1-norm will underestimate the high-
amplitude components[33], and the nuclear-norm may 
lead to biased results[34]. Therefore, some works intro-
duce non-convex optimization. For example, Jiang et al. 
[35] replaced the nuclear-norm with the Ky Fan p-k-norm. 
Zhang et al. [36] introduced the Schatten-q norm which is 
closer to the rank function. Zheng et al. [37] proved that 
the smaller the value of p in the lp (0≤p<1) constraint, the 
more accurate the obtained solution is.  

Although the above approaches improve the perfor-
mance of SC to some extent, they suffer from the follow-
ing issues. The sparse representations obtained by SSC-
based methods are weakly expressive in the same sub-
space and cannot establish the correlation between sam-
ples. LRR and its variants have relatively strict assump-
tions on data distribution, which must theoretically be 
used on independent linear subspaces, and require a high 
time overhead for iterative optimization. Moreover, these 
approaches cannot perceive the intrinsic structure of data. 
To address the above issues, in the next section, we pro-
pose a novel algorithm named SASC to simultaneously 
consider global and local structures for SC. 

3 STRUCTURE-AWARE SUBSPACE CLUSTERING 

In this paper, we aim to learn the all-around and precise 
affinity graph, and design the learning process as follows: 
(a) self-representation learning, (b) local structure learn-
ing, (c) global scatter structure learning, and (d) global 
correlation structure learning. SASC inherits from the 
problem (1), and the regularizer is improved as 𝛷(𝑍) =
𝛷1(𝑍) + 𝛷2(𝑍) + 𝛷3(𝑍). Specifically, we use the grouping 
effect to consider highly correlated samples as a bridge, 
thus presenting a novel global group measure, which 
achieves comprehensive structure awareness by combin-
ing global and local structures with different properties. 
From the global correlation structure considered by the 
classic grouping effect, we further expand the adaptive 
local structure awareness and the global scatter structure 
awareness based on it. 

3.1 Biased Estimated Grouping Effect 

The grouping effect [13],[15] is a very important approach 
in the subspace learning based on dictionary representa-
tion, which is used to find highly correlated samples. 
Specifically, suppose 𝑥𝑖 and 𝑥𝑗  are two arbitrary original 
samples. 𝑧𝑖  and 𝑧𝑗  are the corresponding self-expression 

coefficient of 𝑥𝑖 and 𝑥𝑗  respectively. The grouping effect 
thinks that the relationship of any two samples is con-
sistent with that of their self-expression coefficients. It can 
be defined as 

‖𝑥𝑖 − 𝑥𝑗‖2
2
→ 0 ⟹ ‖𝑧𝑖 − 𝑧𝑗‖2

2
→ 0                    (2) 

Generally, some samples in the real data X are highly 
linearly correlated, that is, X is not full rank. It makes the 
matrix XTX that can be used for affinity measurement 
tends to be non-singular. At this time, the calculation er-
ror of (XTX)-1 will become larger, resulting in the lack of 
stability and reliability of the obtained self-expression 
coefficient matrix Z, and also increasing the risk of over-
fitting. In order to solve this problem, a bias can be added 
to XTX, in which the unbiasedness can be sacrificed for 
higher accuracy to better describe the data. The biased 
grouping process can be expressed as: 

𝜙1(𝑍) =∑∑‖𝑧𝑖 − 𝑧𝑗‖2
2

𝑛

𝑗=1

𝑛

𝑖=1

+
1

𝑛
‖𝑍𝑇𝑒‖2

2                    (3) 

e is an n-dimensional column vector with all element val-
ues of 1. Further, function (2) is transformed into: 

𝜙1(𝑍) = 𝑡𝑟(𝑍𝑍
𝑇)                                     (4) 

Equations (4) and (3) are used to formulate the global 
correlation structure of data. Since the expression of 
Equation (4) is simpler, we use it to capture the global 
correlation structure in our algorithm. By minimizing (4), 
the samples are guaranteed to be highly correlated, while 
avoiding overfitting and out-of-sample problems.  

3.2 Adaptive Local Structure Awareness 

If 𝑥𝑖 and 𝑥𝑗  are close neighbors, this relationship repre-
sents as 𝑥𝑖 ∈ 𝑁𝑘(𝑥𝑗).  According to the grouping effect, 𝑧𝑖 
and 𝑧𝑗 share the same neighbor relationship with 𝑥𝑖 and 𝑥𝑗, 
that is: 

𝑥𝑖 ∈ 𝑁𝑘  (𝑥𝑗) ⇒ 𝑧𝑖 ∈ 𝑁𝑘(𝑧𝑗).                           (5)  

It can help to learn the affinity graph via the local 
neighbor structure between samples, to improve the local 
grouping accuracy. However, existing nearest neighbor 
representations generally have a strong dependence on 
data. In order to dynamically adjust the neighbor rela-
tionship, we introduce an adaptive neighbor representa-
tion learning method. Referring to (4), the objective func-
tion of adaptive local grouping is defined as: 

𝜙2(𝑍) = 𝑡𝑟(𝑍𝐿𝑍𝑇)                                      (6) 

where the matrix L = D - A is a Laplacian matrix. A de-
notes the weight matrix on an adaptive neighbor graph 
and is defined later in Equation 9. The matrix D is a diag-
onal one whose diagonal entries are sums of the corre-
sponding column (or row) of A. By minimizing problem 
(6), we expect that if two samples xi and xj are close, their 
corresponding representations zi and zj are close to each 
other. By constructing such an adaptive neighbor graph L, 
our algorithm can respect the local structure and auto-
matically captures the precise sub-connected components 
with the given data. 

Let 𝑎𝑖𝑗 be the nearest neighbor relationship between xi 
and xj. According to the property of k-nearest neighbors, 
when there is a k-nearest neighbor relationship on xi and 
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xj, aij can be set to  0 < 𝑎𝑖𝑗 ≤ 1, otherwise 𝑎𝑖𝑗=0. In addition, 
the neighbor relationship between xi and any other sam-
ple can be represented by 𝑎𝑖 vector. The following objec-
tive function is obtained: 

min
𝐴
∑‖𝑥𝑖 − 𝑥𝑗‖2

2
𝑎𝑖𝑗

𝑛

𝑗=1

,   𝑠. 𝑡. 𝑎𝑖
𝑇𝑒 = 1, 0 ≤ 𝑎𝑖𝑗 ≤ 1.     (7) 

To increase adaptability and avoid trivial solutions 
[24], constraints on 𝐴 = {𝑎𝑖𝑗} 

𝑛×𝑛  need to be imposed: 

min
𝐴
∑𝑎𝑖𝑗

2

𝑛

𝑗=1

,   𝑠. 𝑡. 𝑎𝑖
𝑇𝑒 = 1, 0 ≤ 𝑎𝑖𝑗 ≤ 1.                 (8) 

From (7) and (8), the overall objective function for cal-
culating the optimal adjacency graph A is: 

min
𝐴
∑(‖𝑥𝑖 − 𝑥𝑗‖2

2
𝑎𝑖𝑗 + 𝜆𝑎𝑖𝑗

2 )

𝑛

𝑗=1

, 

𝑠. 𝑡.  𝑎𝑖
𝑇𝑒 = 1, 0 ≤ 𝑎𝑖𝑗 ≤ 1.                           (9) 

Let 𝑑𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖2
2
, the objective function (9) can be 

further rewritten as: 

min
𝐴
∑(

1

𝜆
𝑑𝑖𝑗𝑎𝑖𝑗 + 𝜆𝑎𝑖𝑗

2 )

𝑛

𝑗=1

, 

𝑠. 𝑡.  𝑎𝑖
𝑇𝑒 = 1, 0 ≤ 𝑎𝑖𝑗 ≤ 1.                            (10) 

And ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 = 1, then (10) can be converted into: 

min
𝐴
‖𝑎𝑖 +

1

2𝜆
𝑑𝑖‖

2

2

, 

𝑠. 𝑡.  𝑎𝑖
𝑇𝑒 = 1, 0 ≤ 𝑎𝑖𝑗 ≤ 1.                           (11) 

According to (11), we construct the Lagrangian func-
tion: 

𝐿(𝑎𝑖 , 𝛿, 𝜃𝑖) =
1

2
‖𝑎𝑖 +

1

2𝜆
𝑑𝑖‖

2

2

− 𝛿( 𝑎𝑖
𝑇𝑒 − 1) − 𝜃𝑖𝑎𝑖

𝑇.    (12) 

Differentiating (12) with respect to 𝑎𝑖𝑗 and setting the 
differential to zero gives: 

𝜕𝐿

𝜕𝑎𝑖𝑗
= 𝑎𝑖𝑗 +

1

2𝜆𝑖
𝑑𝑖𝑗 − 𝛿 − 𝜃 = 0.                 (13) 

According to the KKT condition, 𝜃𝑖𝑎𝑖𝑗 = 0 can be ob-

tained, and then combined with (13), we gain: 

(𝑎𝑖𝑗 +
𝑑𝑖𝑗

2𝜆𝑖
) 𝑎𝑖𝑗 − 𝛿𝑎𝑖𝑗 = 0.                           (14) 

According to (14) as (15), we obtain the adjacency 
graph A.  Noting that, all elements in A are all non-
negative: 

𝑎𝑖𝑗 = (−
𝑑𝑖𝑗

2𝜆𝑖
+ 𝛿)

+

.                                (15) 

It can be seen from (15) that in addition to the original 
sample, 𝑎𝑖𝑗 is also related to the parameters δ and λ. Gen-
erally, setting the nearest neighbor parameter k is much 
easier than manually adjusting the regularization pa-
rameter λ. The reason is that k is an integer with a clear 
meaning, that is, the number of samples that are close to 
the current sample. Therefore, in order to make the algo-
rithm more robust and convenient, the above-mentioned 
parameters δ and λ can be adapted to the given original 
sample X, instead of being specified from subjective expe-
rience or randomness. This problem can be addressed 

with the k-nearest neighbor of the original sample. Put-
ting  𝑎𝑖,𝑘 > 0 and 𝑎𝑖,𝑘+1 = 0 into (15) respectively, can ob-
tain: 

{
 

 −
1

2𝜆𝑖
𝑑𝑖,𝑘 + 𝛿 > 0

−
1

2𝜆𝑖
𝑑𝑖,𝑘+1 + 𝛿 ≤ 0

 .                                 (16) 

From  𝑎𝑖
𝑇𝑒 = 1, we can get: 

∑(−
𝑑𝑖,𝑘

2𝜆𝑖
+ 𝛿)

𝑘

𝑗=1

= 1 ⇒  𝛿 =
1

𝑘
+

1

2𝑘𝜆𝑖
∑𝑑𝑖𝑗

𝑘

𝑗=1

,         (17)  

and then gain the parameter λ. Subsequently, we put the 

obtained δ from (17) into (16): 

          

{
 
 

 
 1

𝑘
+

1

2𝑘𝜆𝑖
∑𝑑𝑖𝑗

𝑘

𝑗=1

>
𝑑𝑖,𝑘
2𝜆𝑖

1

𝑘
+

1

2𝑘𝜆𝑖
∑𝑑𝑖𝑗

𝑘

𝑗=1

≤
𝑑𝑖,𝑘+1

2𝜆𝑖

 ⟹

{
 
 

 
 𝜆𝑖 >

𝑘

2
𝑑𝑖,𝑘 −

1

2
∑𝑑𝑖𝑗

𝑘

𝑗=1

𝜆𝑖 ≤
𝑘

2
𝑑𝑖,𝑘+1 −

1

2
∑𝑑𝑖𝑗

𝑘

𝑗=1

 

⟹
𝑘

2
𝑑𝑖,𝑘 −

1

2
∑𝑑𝑖𝑗

𝑘

𝑗=1

< 𝜆𝑖 ≤
𝑘

2
𝑑𝑖,𝑘+1 −

1

2
∑𝑑𝑖𝑗

𝑘

𝑗=1

.         (18) 

We set 𝜆𝑖 =
𝑘

2
𝑑𝑖,𝑘+1 −

1

2
∑ 𝑑𝑖𝑗
𝑘
𝑗=1 , (𝑖 = 1,2,⋯ , 𝑛), and λ is 

the mean of {𝜆1, 𝜆2, ⋯ , 𝜆𝑛}. λ can represent as: 

𝜆 =
1

𝑛
∑(−

𝑘

2
𝑑𝑖,𝑘+1 −

1

2
∑𝑑𝑖𝑗

𝑘

𝑗=1

)

𝑛

𝑗=1

.                      (19) 

Putting (17) and (19) into (15) obtain the optimal adja-

cency graph 𝐴̃ = [𝑎𝑖𝑗] ∈ ℝ
𝑛×𝑛 , and then diagonalizing 

𝐴̃ get the corresponding adjacency matrix  𝐴∗ =

(|𝐴̃| + |𝐴̃𝑇|) 2⁄ . After that, taking its diagonal elements 

gain the degree matrix 𝐷 = ∑ 𝐴𝑖𝑗
∗𝑛

𝑗=1 . Finally, the adaptive 

neighbor graph 𝐿 = 𝐷−1 2⁄ (𝐷 − 𝐴∗)𝐷−1 2⁄  is calculated by 

𝐴∗ and D. Such a graph can capture the local structure 

that satisfies the grouping effect in the original sample, to 

ensure the local invariance between similar samples. 

3.3 Global Scatter Structure Awareness 

Subspace clustering is to segment high-dimensional data 
into multiple subspaces for data classification. It is true 
that the local neighbor relationship plays an important 
role in determining whether two samples can be divided 
into a class, but relying only on the local structure is not 
very reliable. The pivotal reason is that its sensitivity to 
outliers is lower than the global structure. If the local and 
global structures are considered simultaneously, the im-
portant information of the data can be recovered to the 
maximum extent in the subspace, which has a positive 
influence on improving the clustering accuracy.  

PCA [38] is a classical global representation learning 
method, which maps high-dimensional data to lowdi-
mensional subspaces through basis transformation, and 
expects the retained projection dimension to contain the 
largest information. In other words, this is a process of 
maximizing scatter on the global range. Hence, it can ex-
tract the main information of the data with the least 
amount of information loss. Based on PCA, we propose a 
global structure representation of high-dimensional data, 
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namely the global scatter structure. We capture such a 
global structure 𝐻 = 𝐼 − (1 𝑛⁄ )𝑒𝑒𝑇 by maximizing the to-
tal scatter 𝑆𝑡  of the original sample X, and describe the 
problem as: 

max
𝐻
𝑋𝑇𝐻𝑋 .                                          (20) 

Let 𝑀 = −𝐻, we can transfer problem (20) into: 

min
𝑀
𝑋𝑇𝑀𝑋.                                           (21) 

The key to unsupervised learning is the prior assump-
tion of the consistency, which indicates [45]: (1) nearby 
samples may have the same cluster label; and (2) samples 
with the same structure are likely to have the same cluster 
label. Generally, KNN-based methods rely on the first 
assumption of the local consistency, while PCA-based 
ones depend on the second assumption of the global con-
sistency. Thus, if any two samples xi and xj have the same 
structure, their corresponding representations zi and zj 
also have the same structure, which satisfies the global 
consistency. Moreover, it has been proved that the global 
consistency of representations satisfies the global scatter 
graph M [45,46]. In order to introduce the global scatter 
information in representation learning of the affinity, the 
objective function is defined as: 

𝜙3(𝑍) = 𝑡𝑟(𝑍𝑀𝑍
𝑇) .                                (22) 

3.4 Structure-Aware Subspace Clustering 

The SASC algorithm comprehensively perceives the in-
trinsic structure of the data through three grouping ef-
fects oriented to the above different structural representa-
tions. It aims to improve the discriminative power and 
accuracy of the sample affinity graph and perform effi-
cient subspace clustering analysis. We define the com-
plete objective function of SASC as: 

𝑓(𝑍) = ‖𝑋 − 𝑋𝑍‖𝐹
2 + 𝜙1(𝑍) + 𝜙2(𝑍) + 𝜙3(𝑍) 

= 𝑡𝑟((𝑋 − 𝑋𝑍)(𝑋𝑇 − 𝑍𝑇𝑋𝑇)) 

+𝛼𝑡𝑟(𝑍𝐿𝑍𝑇) + 𝛽𝑡𝑟(𝑍𝑀𝑍𝑇) + 𝛾𝑡𝑟(𝑍𝑍𝑇),            (23) 

where α, β and γ are trade-off coefficients, and they affect 
the learning of the local structure, global scatter structure 
and global correlation structure, respectively. Using the 
convex programming strategy, obtaining the optimal self-
expression coefficient matrix 𝑍 requires differentiating (23) 
with respect to Z and setting it to zero: 

−𝑋𝑇𝑋 + 𝑋𝑇𝑋𝑍 + 𝛼𝑍𝐿 + 𝛽𝑍𝑀 + 𝛾𝑍 = 0.             (24) 
Further, in order to avoid numerical instability, L is re-

quired to be strictly positive[15]. Hence, we replace 𝐿 into 
𝐿∗ = 𝐿 + 𝜖𝐼, where 0 < 𝜖 ≤ 1 and I is the identity matrix. 
It gains 𝑍 by putting 𝐿∗ into (24) and solving: 

(𝑋𝑇𝑋 + 𝛾𝐼)𝑍̃ + 𝑍̃(𝛼𝐿∗ + 𝛽𝑀) = 𝑋𝑇𝑋.               (25) 
According to [39], we finally get a unique solution 𝑍 

by the Bartels-Stewart algorithm. Then, using 𝑍 calculates 
the optimal affinity graph 𝑍∗: 

𝑍∗ =
|𝑍̃| + |𝑍̃𝑇|

2
.                                    (26) 

In summary, the overall process of the proposed struc-
ture-aware subspace clustering algorithm (SASC) is 
summarized as follows: 
Algorithm 1. Structure-Aware Subspace clustering(SASC) 

Input: The original data 𝑋 = [𝑥1, ⋯ , 𝑥𝑛] ∈ ℝ
𝑚×𝑛, the num-

ber of nearest neighbors k, trade-off parameters 𝛼, 𝛽 and 𝛾. 
Output: Results of clustering, strictly positive adaptive 
neighbor graph 𝐿∗, optimal global scatter graph 𝑀∗, and 
the optimal affinity graph 𝑍∗. 
1. Adaptive neighbor structure awareness: 

Build an optimal adjacency matrix 𝐴∗ by (15), (17) and 
(19); Calculate the adaptive neighbor graph L and gain 
the optimal neighbor graph 𝐿∗ = 𝐿 + 𝜖𝐼 by the enforced 
positive strategy.  
2. Global scatter structure awareness: 

Use (21) to get the optimal global scatter graph 𝑀∗ of 
the original sample. 
3. By (25), learn the optimal self-expression coefficient 
matrix 𝑍̃ via the joint grouping effects. 
4. By 𝑍̃ and (26), calculate the optimal affinity graph 𝑍∗. 
5. Use spectral clustering on 𝑍∗ to get the clustering re-
sults. 

3.5 Computational Complexity 

In problem (25), solving Z is a standard Sylvester equa-
tion, which has a unique solution by the Bartels-Stewart 
algorithm [39]. Therefore, the computational complexity 
of our algorithm is O(n3), where n is the number of the 
samples. In LRR and its variants, since the singular value 

thresholding (SVT) is used to obtain a low-rank representation, 

their computational complexity is O(Tn3) where T is the number 

of iterations. Moreover, the complexity of most methods based 

on the mixture of ℓ1-norm and nuclear-norm regularizations also 

is O(Tn3). SASC does not require iterative calculation, so it is 

faster than these approaches. 

3.6 Extension of SASC 

In semi-supervised learning, a given dataset is usually com-

posed of a small number of labeled samples and a large number 

of unlabeled samples. Specifically, given a data matrix 
X=[x1,…,xn]∈ℝ𝑚×𝑛, where xi∈ℝ𝑚×1 denotes the i-th sam-
ple, the first l data points are labeled and the rest ones are 
unlabeled. Suppose these labeled data points belong to c 
classes. We formulate an l  c indicator matrix F where fij = 
1 if xi belongs to the j-th class and fij = 0 otherwise. There-
fore, we can define a label guidance matrix Q as follows: 

   0

0     

l c

n l

F
Q

I



−

 
=  
 

                            (27) 

where In-l denotes an (n-l) (n-l) identity matrix. With the 
label guidance matrix Q, we can expand our SASC to the 
semi-supervised scenario and define the following objec-
tive function: 

2
min ( ) ( ) ( )T T T

FZ
X XQZ tr ZLZ tr ZMZ tr ZZ  − + + +    (28) 

Multi-view SC method aims to segment multi-view da-
ta into underlying clusters. Suppose that X1,…,Xp are the 
data matrices of p views and Xd is the d-th view data. The 
objective function of multi-view SASC is defined as 

2

min ( ( ) )

     ( ( ) ) ( ( ) )

d d d d d T

dFZ

d d T d d T

d

X X Z tr Z L Z

tr Z M Z tr Z Z



 

− +

+ +

          (29) 

The extension of SC methods to semi-supervised or 
multi-view scenarios is an interesting research direction, 
which will be our next research topic. 
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4 EXPERIMENTS 

In this section, we evaluate the performance of the SASC 
algorithm on 15 benchmark datasets that compare with 12 
baseline methods and then analyze several experimental 
results to present our advantages. 

4.1 Datasets 

To validate the effectiveness and robustness of the pro-
posed SASC algorithm on different kinds of data, we con-
sider four types: bioinformatics, handwritten digits, object 
images, and speech signals. Each type contains several 
publicly available datasets. 

4.1.1 Bioinformatic Data 

We select seven bioinformatics datasets including gene 
sequences and lesion images. The number of samples, 
features and classes of these datasets are shown in Table 2. 

Chest is a dataset of the X-ray images that record 
whether patients have pneumonia. The other datasets are 
all gene sequences with different feature dimensions. For 
example, SRBCT is a tumor gene sequence dataset with 88 
samples, each with 2308 gene expressions, of which 5 
samples are identified as non-SRBCT. We employ 83 sam-
ples that are diagnosed with SRBCT, they are divided into 
four categories: EWS, RMS, NB, and BL. The COVID19 is a 

dataset of X-ray images from patients with Covid-19 disease, 
healthy, lung opacity, or viral pneumonia. 

TABLE 2 
DATASETS DESCRIPTION 

Datasets Samples Features Classes 

CLL_SUB 111 11340 3 

GLI_85 85 22283 2 

Lung 203 3312 5 

TOX_171 171 5748 4 

SRBCTML 83 2308 4 

Chest 4933 1024 2 

COVID19 4800 1024 4 

USPSML 1854 256  10 

MFD 2000 649 10 

COIL20 1440 1024 20 

PalmData25 2000 256 100 

UMIST 575 1025 20 

Faces96 3016 4096 151 

Isolet1 1560 617 26 

Isolet5 1559 617 26 

4.1.2 Handwritten Digit Data 

Handwritten digits data contains 10 classes that are the 
digits from 0 to 9. This paper utilized two classic data-
bases: (1) USPS is a grayscale image library, and made by 
the United States Postal Service; (2) MFD is a multi-view 
database. The details of sampled datasets from USPS and 
MFD are illustrated in Table 2. 

4.1.3 Object Image Data 

We use two object image datasets: (1) the daily-object im-
age dataset COIL20; (2) the natural-object palm image 
dataset PalmData25; (3) UMIST is a face image dataset 
with 20 subjects, and each subject demonstrates various 
images with different angles and head gestures; and (4) 

Faces96 contains 3016 face images with various changes 
and is sampled from 151 people who are from different 
races. The details of these datasets are summarized in 
Table 2.  

4.1.4 Speech Signal Data 

Isolet is a speech signal library with 26 English letters 
pronounced twice by 150 speakers. A string is used to 
identify each speaker, which has 617 dimensions that de-
pict the gender, initial, a unique digit, and other features. 
The 150 individuals were divided into five groups, named 
Isolet1, Isolet2, Isolet3, Isolet4 and Isolet5. We select two 
subsets, Isolet1 and Isolet5, for experiments. The number 
of samples, features, and classes of the two subsets are 
demonstrated in Table 2. 

The 15 datasets used in the experiments are high-
dimensional. In particular, the dimension of bioinformat-
ics datasets is higher than that of other types of datasets. 
Each dataset has been transformed into an explicit data 
matrix. From these explicit data matrices, we can observe 
that although these high-dimensional data matrices are 
not sparse, the values of their features differ greatly. In 
the CLL_SUB dataset with 11340 dimensions, for instance, 
the values of the features vary from 10 to 100000. Similar 
observations can be obtained from other bioinformatics 
datasets. Although the feature values of several image 
datasets do not vary as much as those of bioinformatics 
datasets, their feature values also vary in the range of 0 to 
255. Hence, these data generally have complex structures.  

4.2 Baselines and Evaluation Metrics 

As presented in Section 1, the proposed algorithm be-
longs to the unsupervised SC category. Thus, from a 
methodological perspective, we select 12 popular unsu-
pervised methods as baselines for comparison. The 12 
state-of-the-art approaches methods are SSC[11], LRR[12], 
LSR[13], LRSC[14], SMR[15], EnSC[16], S3C[17], 
SSRSC[18], S3COMP[19], SSC+E[20], l0-LRSSC[21], and 
SOGFS[24]. Actually, the above approaches also follow 
such a comparison protocol to select baseline models. 
Compared with existing methods, although the proposed 
algorithm adds several recent methods [20],[21] as com-
parison baselines, datasets and evaluation metrics used in 
our algorithm still follow the comparison protocol. 

To make the experiments fair enough, we use the same 
strategy to set parameters for all the methods. Specifically, 
we set a parameter candidate set Ω = {10-5, 10-4, 10-3, 10-2, 
10-1, 100, 101,102, 103, 104, 105} and the optimal parameters 
are searched from this grid. For the selected parameters, 
the best result of each approach is reported. All the exper-
iments were run under the MATLAB2021a environment 
on a machine with 3.20 GHz CPU and 16GB RAM. Be-
sides, since all the compared methods are unsupervised, 
we regard all samples included in each dataset as test 
ones. Thus, the experimental results we report are the 
clustering result of each compared algorithm on the entire 
dataset. 

To evaluate the clustering performance of the algo-
rithm, we used two common evaluation metrics in the 
experiments, including unsupervised clustering Accuracy 
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rate (ACC) and Normalized Mutual Information (NMI). 
The detailed definitions of ACC and NMI are described in 
[40]. 

4.3 Experimental Results 

The experimental results on the four types of datasets are 
shown in Tables 3-4, respectively. The corresponding 
analysis of the results will be provided below. 

4.3.1 Results on Bioinformatics Data 

According to the experimental findings, we have drawn 
the following conclusions: 

(1) There are few samples and classes on the datasets 
CLL_SUB and GLI_85, and their features have reached 
tens of thousands. As shown in Tables 3-4, we can observe 

that the ACCs of different methods on GLI_85 are about 
70%, but the other results almost stay at a low level, re-
vealing the negative impact of high feature dimension on 
clustering. Furthermore, the two datasets obtained similar 
results on existing graph-based clustering approaches, 
focusing on the regular constraints of various representa-
tions, neither of which significantly contributed to the 
clustering results, especially with the neighbor represen-
tations. The proposed SASC algorithm achieves the high-
est ACC on these two datasets, and is also comparable to 
the best results in the baseline algorithm in NMI, demon-
strating the effectiveness of the algorithm on high-
dimensional digital sequences. 

TABLE 3 
CLUSTERING RESULTS (ACC%) OF THE COMPARED APPROACHES ON 15 DATASETS 

Datasets SSC LRR LSR LRSC SMR EnSC S3C SSRSC S3COMP SSC+E l0-RSSC SOGFS SASC 

CLL_SUB 51.35 54.05 54.96 54.96 55.85 54.05 55.86 54.96 57.66 55.86 55.86 45.95 61.26 

GLI_85 70.59 70.59 70.59 75.29 77.65 72.33 72.94 72.94 68.24 67.06 70.59 67.06 83.53 

Lung 86.70 68.47 86.21 76.36 88.18 87.19 87.69 84.24 73.89  86.70 75.86 83.74 88.67 

TOX_171 45.02 46.78 57.31 47.37 56.73 49.70 49.71 56.73 40.94 46.19 45.61 40.94 58.48 

SRBCTML 41.96 43.37 55.42 53.01 55.42 54.56 56.63 60.24 61.45 48.19 67.06 65.06 68.67 

Chest 65.74 70.40 87.72 85.43 84.98 73.78 72.80 86.66 75.65 70.09 88.57 56.55 85.93 

COVID19 55.19 53.86 64.66 67.02 68.27 61.88 65.89 62.88 56.28 45.72 45.69 58.44 70.33 

USPSML 64.06 68.29 70.44 66.24 75.51 61.54 72.06 69.42 61.25 68.07 61.22 65.10 75.62 

MFD 92.50 93.15 90.10 89.30 94.55 74.06 94.75 91.95 77.35 73.00 72.05 64.00 95.00 

COIL20 67.36 47.29 61.32 61.11 65.07 50.69 77.57 75.07 54.10 77.92 78.13 69.65 88.13 

PalmData25 68.85 76.10 84.10 84.15 90.05 52.50 56.45 98.45 52.70 72.90 96.90 76.25 90.10 

UMIST 61.21 50.43 55.3 50.26 66.08 64.17 62.14 66.95 52.17 59.13 52.34 57.21 69.04 

Faces96 48.44 47.24 67.24 63.22 71.05 63.46 61.06 66.01 54.6 63.79 67.77 61.73 77.02 

Isolet1 60.06 57.37 68.94 66.92 69.68 65.51 51.67 54.87 38.33 72.50 68.97 67.24 71.73 

Isolet5 53.3 43.81 54.33 59.14 56.19 39.13 45.67 42.14 33.03 55.16 52.79 50.16 56.19 

TABLE 4 
CLUSTERING RESULTS (NMI%) OF THE COMPARED APPROACHES ON 15 DATASETS 

Datasets SSC LRR LSR LRSC SMR EnSC S3C SSRSC S3COMP SSC+E l0-RSSC SOGFS SASC 

CLL_SUB 17.02 26.22 26.31 26.31 34.12 26.08 28.30 26.31 29.78 34.12 22.84 27.82 29.39 

GLI_85 17.67 23.86 23.86 25.10 31.20 16.78 26.07 26.07 15.88 15.69 23.86 20.88 36.38 

Lung 66.98 51.57 64.42 52.02 68.33 64.72 65.34 59.79 49.85 67.65 53.72 60.11 70.05 

TOX_171 26.40 21.10 30.47 25.56 35.05 28.25 26.78 37.92 19.22 22.01 23.94 13.75 33.36 

SRBCTML 14.02 17.82 28.75 33.54 29.30 30.96 44.11 35.69 32.57 20.06 56.95 45.42 47.52 

Chest 12.21 15.85 43.45 38.06 37.22 19.87 14.76 39.46 25.28 17.72 45.35 36.13 39.74 

COVID19 27.83 28.44 42.28 42.88 43.67 35.58 33.39 36.86 32.79 28.8 28.71 32.49 45.07 

USPSML 60.09 66.02 68.84 65.67 74.84 62.77 68.63 68.17 63.21 65.12 65.13 62.54 75.71 

MFD 86.17 86.51 82.68 81.93 89.03 76.77 89.65 85.51 78.13 69.59 68.79 59.86 89.73 

COIL20 77.28 60.77 72.49 73.42 73.09 53.81 89.74 86.75 60.72 87.85 88.62 76.06 92.91 

PalmData25 89.75 92.59 95.53 94.00 96.71 59.65 75.86 99.65 74.20 91.31 99.31 90.68 96.77 

UMIST 72.84 68.58 72.35 65.28 80.94 79.95 74.69 81.53 64.33 75.6 72.35 71.54 84.85 

Faces96 71.04 66.42 84.53 76.15 83.54 78.36 85.57 85.87 76.83 83.84 84.69 85.03 90.77 

Isolet1 73.30 71.21 77.74 75.67 78.95 77.44 67.33 67.13 49.20 79.25 73.53 78.65 80.26 

Isolet5 70.37 63.47 68.64 68.79 72.31 47.2 61.75 59.77 44.68 71.49 63.76 67.85 72.82 
 

TABLE 5 
RUNNING TIME (S) OF EACH ALGORITHM ON TWELVE DATASETS 

Datasets SSC LRR LSR LRSC SMR EnSC S3C SSRSC S3COMP SSC+E l0-RSSC SOGFS SASC 

CLL_SUB 218.2 4.261 0.042 12.51 0.053 4.721 3.359 0.112 2.792 0.013 0.075 0.302 0.051 

GLI_85 603.3 5.773 0.054 37.40 0.061 23.42 3.027 0.115 5.606 0.018 0.079 0.091 0.044 

Lung 33.32 3.609 0.094 0.182 0.086 1.001 3.106 0.178 1.870 0.019 0.143 4.037 0.085 

TOX_171 69.19 4.330 0.072 0.388 0.076 1.393 4.222 0.175 2.313 0.018 0.136 0.575 0.068 

SRBCTML 8.329 0.683 0.048 0.403 0.051 0.285 0.422 0.068 0.499 0.009 0.066 0.078 0.049 
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Chest 482.4 175.5 4.957 3.912 32.38 27.55 598.1 96.46 37.98 16.28 314.7 37.05 28.33 

USPSML 33.09 8.317 0.897 0.792 2.190 5.319 39.78 10.08 4.753 0.928 123.9 5.503 1.835 

MFD 58.96 32.31 0.932 0.886 2.384 6.762 60.52 12.35 6.823 1.177 16.27 16.43 2.127 

COIL20 46.81 65.16 0.682 0.866 1.341 3.555 158.6 6.019 6.970 0.521 6.242 9.914 1.273 

PalmData25 39.31 8.816 2.984 3.046 4.043 11.43 156.3 13.62 19.18 1.649 17.54 8.112 4.041 

Isolet1 35.50 22.31 0.929 1.086 1.702 11.61 36.39 7.255 6.431 0.645 63.03 11.77 1.658 

Isolet5 42.04 22.84 0.946 1.099 1.767 12.22 38.17 7.295 6.378 0.662 64.84 13.07 1.742 
 

(2) The algorithms with the sparse representation, such 
as SSC, S3C, and SSC+E, show better clustering perfor-
mance than the algorithms using the low-rank representa-
tion. Obviously, ℓ0-LRSSC considers both sparse and low-
rank, and also gains relatively poor clustering results. The 
above-mentioned observations suggest that the low-rank 
representation is not conducive to the accurate identifica-
tion of Lung and TOX_171 information. In addition, alt-
hough LSR, SMR, SSRSC, and SOGFS have good cluster-
ing performance, the proposed SASC reports better clus-
tering results by combining grouping effects with differ-
ent structures. 

(3) The clustering performances of each method on 
SRBCTML and Chest are quite different. For SRBCTML, 
algorithms that employ a single structure generally fail to 
obtain acceptable clustering accuracy. The ℓ0-LRSSC rep-
resented by the combination of sparse and low-rank rep-
resentations obtains better results, which shows that 
SRBCTML has higher requirements for the comprehen-
siveness of information. A breakthrough in clustering 
performance improvement cannot be achieved by consid-
ering either the local or the global structure. SASC 
achieves better results in terms of clustering accuracy, 
possibly benefiting from the new global grouping meas-
ure strategy we introduce, and better exploiting the key 
information of the sample. Chest is different from the 
other 5 datasets about gene sequences and expresses le-
sion information through pixels, so LSR, SMR and SSRSC 
perform better on Chest, which is comparable to ℓ0-LRSSC 
considering the combined structure. The proposed SASC 
demonstrates comparable performance with the best 
method. 

4.3.2 Results on Handwritten Digit Data 

From Tables 3-4, we acquire the following conclusions: 
(1) The proposed SASC algorithm reports the best clus-

tering results on the USPSML and MFD, which verifies 
the effectiveness of the algorithm on subspace clustering 
tasks. 

(2) We find that the performance of the two datasets on 
SOGFS shows the lowest level. It can be inferred that the 
neighbor relationship is not suitable for the recognition of 
handwritten digits. Although the proposed SASC also 
draws on the idea of neighbor in obtaining the local struc-
ture, we introduce the adaptive learning of the neighbor 
representations to capture the local structure using the 
highly correlated grouping effect. Hence, our algorithm 
still performs well, and the clustering results prove that 
the proposed SASC has wider adaptability and higher 
robustness. 

4.3.3 Results on Object Image Data 

This section draws the following conclusions from the 
data of routine objects and natural plants on COIL20 and 
PalmData25: 

(1) The number of classes in the COIL20 is much 
smaller than that of features. The clustering results are 
significantly worse for LRR, EnSC and S3COMP, but bet-
ter for S3C and l0-LRSSC. In addition, it performs well on 
SSRSC and SSC+E, but the clustering performance is me-
diocre on several classic models such as SSC, LSR, LRSC 
and SMR. Our algorithm has the best clustering results on 
COIL20, which verifies the effectiveness of the proposed 
SASC for learning an object image representation. 

(2) The number of classes on PalmData25 is slightly 
smaller than that of features. This dataset can achieve 
good results on most algorithms, especially on methods 
using the grouping effect, such as LSR, SMR, SSRSC. 
However, it performs poorly on sparse representation 
methods, such as EnSC, S3C, and S3COMP. Results ob-
tained by SASC are comparable to the best results and 
outperform most state-of-the-art baseline algorithms. 

4.3.4 Results on Speech Signal Data 

As can be seen in Tables 3-4, the two sub-datasets basical-
ly perform similar results, from which we draw the fol-
lowing conclusions: 

The S3COMP algorithm using dropout has a relatively 
poor result on the recognition of speech signals with tim-
ing characteristics, which is lower than all other algo-
rithms. Instead, it has achieved good results on several 
classic algorithms, such as SSC, LSR, LRSC and SMR. The 
clustering performance of SSC+E is slightly better than 
that of SSC. SASC shows the best performance on the two 
speech signal datasets, which verifies the effectiveness of 
the proposed algorithm on speech data. 

In a word, the NMI value of our SASC is lower than 
that of the best baseline method on CLL_SUB, TOX_171, 
SRBCTML, Chest, and PalmData25 datasets. On the other 
hand, the ACC value of our SASC is higher than that of 
all baseline methods on CLL_SUB, TOX_171, and 
SRBCTML datasets. In other words, the proposed algo-
rithm is completely defeated by the baseline method only 
on Chest and PalmData25 datasets. The ACC metric cal-
culates how many samples are correctly clustered into the 
corresponding class. NMI represents the correlation be-
tween the predicted labels and ground-truth labels with-
out a bias towards smaller clusters. The reason why NMI 
of SASC is inferior to that of the baseline algorithm on the 
five datasets may be the low correlation between the pre-
dicted labels and ground-truth labels, which is the dataset 
dependent. For example, the Chest dataset is different 
from the other 5 datasets about gene sequences and ex-
presses lesion information through pixels, which is very 
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difficult to obtain the intrinsic structure of the image. At 
the same time, such images differ very little in appearance, 
and have a large number of repetitive elements. It means 
that distinguishing these images needs to rely on more 
small correlations, so ℓ0-LRSSC considering the spare and 
low-rank structure is superior to other methods on the 
Chest dataset. The proposed SASC demonstrates compa-
rable performance with ℓ0-LRSSC. Since the number of 
classes on PalmData25 is slightly smaller than that of fea-
tures, the global structure plays an important role in seg-
menting data into different clusters. Thus, approaches 
based on the global structure are superior to those focus-
ing on the sparse representation or the local representa-
tion. SSRSC gains the best performance on this dataset. 
Although our SASC considers the global correlation 
structure, it fails to show better performance, in which the 
local structure has no positive effect on clustering per-
formance. 

Since the twelve baseline methods are state-of-the-art, 
it is difficult for each algorithm to show the dominant 
performance on the 15 datasets, including our algorithm. 
From the experiments, we find that our algorithm outper-
forms all compared methods on 10 datasets. Especially, its 
NMI is 13% higher than that of the state-of-the-art algo-
rithm SSRSC on two speech signal datasets. Moreover, on 
USPSML and COIL20, NMI of our SASC is about 7% 
higher than that of SSRSC. Although NMI of our SASC is 
lower than that of the best baseline method on five da-
tasets, its ACC is higher than that of all compared meth-
ods on 11 datasets. This indicates the effectiveness of the 
proposed SASC. In addition, two metrics can more fully 
reflect the performance of the algorithm. 

Finally, Table 5 shows the computational time of all the 
methods on the twelve datasets. We can observe that alt-
hough the proposed SASC algorithm is slower than LSR 
and SSC+E, it is faster than these algorithms based on ℓ1-
norm or nuclear-norm regularization.  

4.3.5 Comparison with KNN-based method 

Our algorithm constructs an adaptive neighbor graph to 
capture the local structure. On the other hand, many 
methods respect the local structure by building a k-
nearest neighbor (KNN) graph. Suppose we use the KNN 
graph instead of the adaptive graph in our algorithm. For 
simplicity, the KNN-based SASC is called SKNN. In this 
section, we exploit experiments to verify the differences 
between the methods based on these two graphs. We only 
perform the validation on five datasets. Similar observa-
tions can be gained on the remaining datasets and are 
omitted. The experimental results are shown in Table 6. 
From Table 6, we can see that the proposed algorithm is 
slightly better than SKNN. 

TABLE 6 
CLUSTERING RESULTS OBTAINED BY TWO ALGORITHMS 

Datasets COVID19 COIL20 UMIST Faces96 Isolet1 

SKNN 
ACC 69.05 81.11 67.30 72.51 68.14 

NMI 44.77 87.11 81.64 87.58 79.29 

SASC  
ACC 70.33 88.13 69.04 77.02 71.73 

NMI 45.07 92.91 84.85 90.77 80.26 

4.3.6 Ablation Experiment  

It is easy to see that when α = 0 and β = 0, our SASC de-
grades to LSR [13]. If β = 0 and γ = 0, our algorithm only 
captures the adaptive local structure to seek the represen-
tation; and if α = 0 and γ = 0, our algorithm learns a repre-
sentation by considering the global structure. Next, we 
perform a group of experiments to discuss the effect of a 
single regularization term. We conduct ablation experi-
ments on six datasets, and only give the NMI value of 
clustering. Similar observations can be obtained on the 
remaining datasets and are left out. The experimental 
results are presented in Table 7. As can be seen from Table 
7, different regularization terms have different effects. 
Obviously, the local structure plays a more important role 
in learning a representation than the other two structures. 
It has been shown that due to the lack of sample labels, 
the local structure is more important than the global 
structure in unsupervised learning. Although the global 
structure and the global correlation structure are not as 
important as the local structure, they can also play an 
active role in learning the representation [13],[46],[47]. 
Hence, by capturing the adaptive local structure, the 
global structure, and the global correlation structure, our 
SASC can express the affinity between samples relatively 
accurately and reduce the sensitivity to multi-source data 
and noise interference. 

TABLE 7 
CLUSTERING RESULTS (NMI%) OBTAINED BY USING A REGU-

LARIZER 

Paremeters α≠0,β=0,γ=0 α=0,β≠0,γ=0 α=0,β=0,γ≠0 

COVID19 43.96 22.86 42.28 

USPSML 74.61 46.27 68.84 

COIL20 77.97 52.33 72.49 

UMIST 83.01 60.07 72.35 

Faces96 86.66 73.42 84.53 

Isolet1 79.52 50.24 77.74 

4.3.7 Experiments on noisy datasets 

Although most SC methods based on the sparse represen-
tation or the low-rank representation claim that they are 
robust to noise, they ignore the experiments on noisy da-
tasets. Such an experiment is indeed important, and 
therefore deserves further exploration. To this end, we 
test the impact of noise on our algorithm and all baseline 
methods in this section. To generate noisy data, we add 
salt & pepper noise with a density of 20% to the 15 da-
tasets in our experiments. The results on 15 noisy datasets 
are respectively reported in Tables 8-9. 

From Tables 8-9, we can obtain the following observa-
tions: 

(1) Compared with the results on the clean datasets, 
the performance of all the algorithms on noisy datasets 
decreases to different extents. Obviously, noise interferes 
with learning an accurate representation, thus reducing 
the clustering accuracy. Although the performance of the 
proposed algorithm also decreases, its decline is relatively 
small in comparison to other baselines. On the Isolet1 and 
Isolet5 datasets, for example, our algorithm is almost free 
from noise. The proposed algorithm does not outperform 
the best baseline on clean datasets, such as TOX_171, 
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SRBCTML, and so on. However, when these datasets are 
contaminated with noise, our algorithm outperforms all 
baselines. Intuitively, this indicates that the proposed al-
gorithm is relatively robust to noise. 

(2) The performance of SMR, SOGFS and SSC+E de-
creases significantly on noisy datasets. Clearly, the three 
methods using the local structure or entropy norm to 
learn the representation are sensitive to noise. Although 
the approaches using the sparse representation or the 
low-rank representation are inferior to our algorithm on 
noisy datasets, they outperform the above three methods. 
Hence, they are robust to noise. 

4.3.8 Parameter Selection 

In this section, we will evaluate the parameter sensitivity 

of the proposed SASC algorithm and select the optimal 
parameters. The algorithm has three adjustable parame-
ters α, β and γ, which represent the importance of the 
adaptive local structure, the global scatter structure and 
the global correlation structure, respectively. In general, 
there are two common strategies to select parameters. 
One is to select parameters from a predefined grid, which 
is called grid search. The other is to employ k-fold cross 
validation to set parameters. Baselines and other SC 
methods [15],[21,[24] employ grid search to select param-
eters because it is simpler. Following this line, we also 
exploit grid search to select three parameters in our algo-
rithm.  

TABLE 8 
CLUSTERING RESULTS (ACC%) OF THE COMPARED APPROACHES ON 15 NOISY DATASETS 

Datasets SSC LRR LSR LRSC SMR EnSC S3C SSRSC S3COMP SSC+E l0-RSSC SOGFS SASC 

CLL_SUB 49.27 50.46 54.95 52.25 54.95 51.58 54.95 51.35 54.95 45.94 54.95 45.94 54.95 

GLI_85 65.41 67.58 67.58 71.76 69.41 66.62 68.23 65.88 66.23 68.23 69.41 60.23 72.94 

Lung 66.01 50.73 64.53 60.09 63.54 65.27 67.14 68.96 66.01 79.80 62.06 65.02 82.59 

TOX_171 44.44 40.35 46.19 46.36 43.86 45.08 47.36 45.02 39.25 41.52 43.86 39.18 47.95 

SRBCTML 39.39 40.96 51.81 46.98 50.60 46.14 46.98 53.01 55.42 43.37 54.21 46.98 66.88 

Chest 63.31 66.04 74.01 73.67 50.41 68.24 66.67 72.44 72.69 60.22 74.52 52.11 73.22 

COVID19 46.0 42.27 59.63 59.13 46.16 54.66 60.05 56.27 47.76 35.63 44.36 40.83 61.89 

USPSML 58.08 63.97 61.75 60.48 58.46 58.46 64.52 62.19 54.5 29.63 54.8 33.17 74.64 

MFD 67.75 71.75 73.1 77.1 66.2 71.1 73.44 70.62 58.95 32.55 59.15 56.3 83.9 

COIL20 58.81 40.15 56.63 60.31 55.69 48.75 63.33 57.29 49.79 31.04 58.26 42.63 82.08 

PalmData25 55.45 62.65 78.1 75.85 70.4 50.91 52.22 82.64 51.3 55.05 64.05 62.2 80.7 

UMIST 51.52 44.34 53.73 47.65 48.52 53.04 51.82 52.34 48.95 46.61 47.47 52.0 68.61 

Faces96 47.67 46.25 61.07 56.49 56.66 58.98 60.72 53.34 49.93 48.21 60.74 54.27 71.68 

Isolet1 57.41 53.75 67.43 65.98 64.16 63.91 50.42 53.25 36.66 35.92 62.94 36.84 70.01 

Isolet5 51.71 42.52 51.18 55.03 47.08 34.83 43.3 41.72 31.56 31.35 50.28 31.61 55.35 

TABLE 9 
CLUSTERING RESULTS (NMI%) OF THE COMPARED APPROACHES ON 15 NOISY DATASETS 

Datasets SSC LRR LSR LRSC SMR EnSC S3C SSRSC S3COMP SSC+E l0-RSSC SOGFS SASC 

CLL_SUB 13.71 14.72 21.83 15.06 21.83 15.06 24.49 18.01 24.08 8.02 21.83 13.13 26.31 

GLI_85 6.79 7.36 7.36 24.93 9.63 7.72 18.40 19.96 14.83 9.15 9.63 6.87 26.06 

Lung 29.28 27.31 46.87 46.67 46.29 30.23 42.15 47.6 43.02 53.47 42.85 32.99 64.98 

TOX_171 16.04 14.34 22.04 21.53 22.57 17.19 20.91 21.16 13.45 10.84 20.91 12.46 25.97 

SRBCTML 12.65 11.29 21.87 18.39 20.7 22.39 26.35 27.62 33.83 17.37 23.14 23.84 44.12 

Chest 9.05 10.99 19.11 22.44 8.72 14.47 13.59 20.06 15.56 7.65 23.99 11.12 21.22 

COVID19 23.93 21.58 32.27 31.60 29.43 31.81 27.49 27.79 25.61 12.08 27.42 20.67 33.55 

USPSML 51.95 55.4 59.2 63.54 52.18 58.66 59.55 59.59 48.27 35.55 49.68 22.9 73.65 

MFD 59.15 60.47 61.21 64.18 57.98 61.82 65.06 62.77 50.24 25.15 56.26 49.29 72.66 

COIL20 70.23 57.77 68.6 72.76 68.99 50.99 73.33 70.96 58.11 39.7 71.57 56.78 86.78 

PalmData25 75.89 83.39 89.59 92.02 87.63 56.02 63.2 93.87 73.81 76.19 80.61 82.31 92.77 

UMIST 68.42 55.25 70.05 60.9 61.28 68.58 70.21 67.87 54.73 58.72 57.95 65.95 81.73 

Faces96 70.78 65.53 82.16 66.36 77.28 77.51 81.15 77.25 74.04 73.79 79.35 79.51 88.48 

Isolet1 71.72 67.43 76.07 73.87 74.81 74.27 66.38 65.07 47.68 40.61 70.57 44.98 79.91 

Isolet5 68.97 61.51 66.40 67.08 64.87 46.08 59.67 58.47 42.57 31.70 61.72 39.52 70.31 

 

In the experiment, we set the parameter candidate set 
Ω = {10-5, 10-4, 10-3, 10-2, 10-1, 100, 101,102, 103, 104, 105}. Fixing 
the parameter γ, we execute the SASC on different da-
tasets in the candidate set to explore the influence of the 
two structures on the clustering results of different data, 
determining the optimal α and β, and then find the best γ 
in the candidate set through a consistent strategy. Fig. 3 

shows the impact of three parameters on the performance 
of our algorithm on six bioinformatics datasets. Similar 
observations can be obtained on the rest of datasets and 
thus omitted. 

From Fig. 3, we can observe that α and β have a rela-
tively large influence on SASC. Our algorithm seems in-
sensitive to different values of γ. When α changes within 
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the range of [10-2,102], our SASC achieves good perfor-
mance. Generally, when α is greater than 102 or less than 
10-2, the performance of our algorithm will decline. For 
instance, on the Lung dataset, SASC performs poorly 
when α is greater than 102. However, when it is less than 
this value, SASC becomes stable and gains better perfor-

mance. As we can see, SASC achieves consistently good 
performance when β is changing from 10-5 to 10-3. SASC 
becomes very stable when β is less than 10-3. SASC is rela-
tively stable on the parameter γ. In the experiments, the 
value of γ is set to the range of [10-2,101]. 

 
(a) CLL_SUB. 

 
(b) GLI_85. 

 
(c) Lung.  

 
(d) TOX_171.  

 
(e) SRBCTML.  
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(f) Chest.  

Fig. 3. The relationship between clustering results and parameters α, β, γ on six bioinformatics datasets. In each of the subfigures (a),(b),(c), 
(d),(e) and (f), when γ is fixed, the left panel demonstrates the ACC value of our algorithm with different α and β; the middle panel shows NMI 
of our algorithm with different α and β; and the right panel shows ACC and NMI of our algorithm with different γ when α and β are fixed. 

Obviously, if we set inappropriate values for these pa-
rameters, the performance of our algorithm will be great-
ly reduced. Such an issue also exists in other SC methods. 
Hence, the suitable values of the parameters are critical to 
SC and feature learning approaches. 

5 CONCLUSIONS 

We propose a novel subspace clustering framework 
named SASC, which simultaneously captures the local 
structure of the intra-cluster, the global correlation struc-
ture on the inter-cluster, and the global scatter structure. 
We also present a new grouping-measure approach that 
combines the grouping effect with various representation 
structures to perform subspace representation learning 
comprehensively and accurately. Extensive experiments 
demonstrate consistently good performance on various 
data, including bioinformatics, handwritten digits, object 
images, and speech signals. These results validate the 
effectiveness of the proposed SASC and its lower sensitiv-
ity on different data. In the future, there are two points 
that can be extended: (1) designing a more convenient 
way for parameter selection or adaptive parameter learn-
ing approach; (2) exploring analyzing methods that can 
be applied to large-scale data or developing effective data 
filtering strategies. 
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